.. _tutorials: Tutorials ================================== Work in progress! But here a simple example from our `README.md `_: .. code-block:: python from queens.distributions import BetaDistribution, NormalDistribution, UniformDistribution from queens.drivers import FunctionDriver from queens.global_settings import GlobalSettings from queens.iterators import MonteCarloIterator from queens.main import run_iterator from queens.models import SimulationModel from queens.parameters import Parameters from queens.schedulers import LocalScheduler if __name__ == "__main__": # Set up the global settings global_settings = GlobalSettings(experiment_name="monte_carlo_uq", output_dir=".") # Set up the uncertain parameters x1 = UniformDistribution(lower_bound=-3.14, upper_bound=3.14) x2 = NormalDistribution(mean=0.0, covariance=1.0) x3 = BetaDistribution(lower_bound=-3.14, upper_bound=3.14, a=2.0, b=5.0) parameters = Parameters(x1=x1, x2=x2, x3=x3) # Set up the model driver = FunctionDriver(parameters=parameters, function="ishigami90") scheduler = LocalScheduler( experiment_name=global_settings.experiment_name, num_jobs=2, num_procs=4 ) model = SimulationModel(scheduler=scheduler, driver=driver) # Set up the algorithm iterator = MonteCarloIterator( model=model, parameters=parameters, global_settings=global_settings, seed=42, num_samples=1000, result_description={"write_results": True, "plot_results": True}, ) # Start QUEENS run run_iterator(iterator, global_settings=global_settings) Resulting in the histogram: .. image:: images/monte_carlo_uq.png :width: 500 :align: center :alt: Monte Carlo Histogram