Source code for queens.models.simulation_model
#
# SPDX-License-Identifier: LGPL-3.0-or-later
# Copyright (c) 2024-2025, QUEENS contributors.
#
# This file is part of QUEENS.
#
# QUEENS is free software: you can redistribute it and/or modify it under the terms of the GNU
# Lesser General Public License as published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version. QUEENS is distributed in the hope that it will
# be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You
# should have received a copy of the GNU Lesser General Public License along with QUEENS. If not,
# see <https://www.gnu.org/licenses/>.
#
"""Simulation model class."""
import numpy as np
from queens.models.model import Model
from queens.utils.logger_settings import log_init_args
[docs]
class SimulationModel(Model):
"""Simulation model class.
Attributes:
scheduler (Scheduler): Scheduler for the simulations
driver (Driver): Driver for the simulations
"""
@log_init_args
def __init__(self, scheduler, driver):
"""Initialize simulation model.
Args:
scheduler (Scheduler): Scheduler for the simulations
driver (Driver): Driver for the simulations
"""
super().__init__()
self.scheduler = scheduler
self.driver = driver
self.scheduler.copy_files_to_experiment_dir(self.driver.files_to_copy)
[docs]
def evaluate(self, samples):
"""Evaluate model with current set of input samples.
Args:
samples (np.ndarray): Input samples
Returns:
response (dict): Response of the underlying model at input samples
"""
self.response = self.scheduler.evaluate(samples, driver=self.driver)
return self.response
[docs]
def grad(self, samples, upstream_gradient):
r"""Evaluate gradient of model w.r.t. current set of input samples.
Consider current model f(x) with input samples x, and upstream function g(f). The provided
upstream gradient is :math:`\frac{\partial g}{\partial f}` and the method returns
:math:`\frac{\partial g}{\partial f} \frac{df}{dx}`.
Args:
samples (np.array): Input samples
upstream_gradient (np.array): Upstream gradient function evaluated at input samples
:math:`\frac{\partial g}{\partial f}`
Returns:
gradient (np.array): Gradient w.r.t. current set of input samples
:math:`\frac{\partial g}{\partial f} \frac{df}{dx}`
"""
if self.response.get("gradient") is None:
raise ValueError("Gradient information not available.")
# The shape of the returned gradient is weird
response_gradient = np.swapaxes(self.response["gradient"], 1, 2)
gradient = np.sum(upstream_gradient[:, :, np.newaxis] * response_gradient, axis=1)
return gradient