Tutorials#
Work in progress!
But here a simple example from our README.md:
from queens.distributions import BetaDistribution, NormalDistribution, UniformDistribution
from queens.drivers import FunctionDriver
from queens.global_settings import GlobalSettings
from queens.iterators import MonteCarloIterator
from queens.main import run_iterator
from queens.models import SimulationModel
from queens.parameters import Parameters
from queens.schedulers import LocalScheduler
if __name__ == "__main__":
# Set up the global settings
global_settings = GlobalSettings(experiment_name="monte_carlo_uq", output_dir=".")
# Set up the uncertain parameters
x1 = UniformDistribution(lower_bound=-3.14, upper_bound=3.14)
x2 = NormalDistribution(mean=0.0, covariance=1.0)
x3 = BetaDistribution(lower_bound=-3.14, upper_bound=3.14, a=2.0, b=5.0)
parameters = Parameters(x1=x1, x2=x2, x3=x3)
# Set up the model
driver = FunctionDriver(parameters=parameters, function="ishigami90")
scheduler = LocalScheduler(
experiment_name=global_settings.experiment_name, num_jobs=2, num_procs=4
)
model = SimulationModel(scheduler=scheduler, driver=driver)
# Set up the algorithm
iterator = MonteCarloIterator(
model=model,
parameters=parameters,
global_settings=global_settings,
seed=42,
num_samples=1000,
result_description={"write_results": True, "plot_results": True},
)
# Start QUEENS run
run_iterator(iterator, global_settings=global_settings)
Resulting in the histogram:
