queens.visualization package#
Visualization.
Modules for visualizing results.
Submodules#
queens.visualization.bmfia_visualization module#
Provide utilities and a class for visualization in BMFIA analysis.
- class BMFIAVisualization(paths, save_bools, plot_booleans)[source]#
Bases:
object
Visualization class for BMFIA with plotting and saving capabilities.
Visualization class for BMFIA that contains several plotting, storing and visualization methods that can be used anywhere in QUEENS.
- paths#
List with paths to save the plots.
- Type:
list
- save_bools#
List with booleans to save plots.
- Type:
list
- plot_booleans#
List of booleans for determining whether individual plots should be plotted or not.
- Type:
list
- Returns:
BMFIAVisualization (obj) – Instance of the BMFIAVisualization Class
- classmethod from_config_create(plotting_options)[source]#
Create the BMFIA visualization object from the problem description.
- Parameters:
plotting_options (dict) – Dictionary with plotting options
- Returns:
Instance of BMFIA visualization (obj)
- plot(z_train, Y_HF_train, regression_obj_lst)[source]#
Plot probabilistic manifold and informative features.
Plot the probabilistic manifold of high-fidelity, low-fidelity outputs and informative features of the input space, depending on the description in the input file. Also plot the probabilistic mapping along with its training points. Potentially animate and save these plots.
- Parameters:
z_train (np.array) – Low-fidelity feature vector
Y_HF_train (np.array) – High-fidelity output training points
regression_obj_lst (lst) – List of involved regression objects
- Returns:
Plots of the probabilistic manifold
- plot_posterior_from_samples(samples, weights, dim_labels_lst)[source]#
Visualize the posterior distribution or marginals for posteriors.
Visualize the multi-fidelity posterior distribution (up to 2D) or its marginals for higher dimensional posteriors.
- Parameters:
samples (np.array) – Samples of the posterior. Each row is a different sample-vector. Different columns represent the different dimensions of the posterior.
weights (np.array) – Weights of the posterior samples. One weight for each sample row.
dim_labels_lst (lst) – List with labels/naming of the involved dimensions. Order of the list corresponds to order of columns in sample matrix.
- plot_model_dependency(z_train, Y_HF_train, regression_obj_lst)[source]#
Plot multi-fidelity dependencies with optional informative features.
Plot the multi-fidelity dependency in \(\Omega_{y_{lf}\times y_{hf}}\) or in \(\Omega_{y_{lf}\times y_{hf}\times \gamma_1}\)
- Parameters:
z_train (np.array) – Training data for the low-fidelity vector that contains the output of the low-fidelity model and potentially informative low-fidelity features
Y_HF_train (np.array) – Training vector of the high-fidelity model outputs
regression_obj_lst (list) – List containing (probabilistic)
queens.visualization.bmfmc_visualization module#
Visualization for BMFMC-UQ.
A module that provides utilities and a class for visualization in BMFMC- UQ.
- class BMFMCVisualization(paths, save_bools, animation_bool, predictive_var, no_features_ref, plot_booleans)[source]#
Bases:
object
Visualization class for BMFMC-UQ.
This contains several plotting, storing and visualization methods that can be used anywhere in QUEENS.
- paths#
List with paths to save the plots.
- Type:
list
- save_bools#
List with booleans to save plots.
- Type:
list
- animation_bool#
Flag for animation of 3D plots.
- Type:
bool
- predictive_var#
Flag for predictive variance plots.
- Type:
bool
- no_features_ref#
Flag for BMFMC-reference without informative features plot.
- Type:
bool
- plot_booleans#
List of booleans for determining whether individual plots should be plotted or not.
- Type:
list
- Returns:
BMFMCVisualization (obj) – Instance of the BMFMCVisualization Class
- classmethod from_config_create(plotting_options, predictive_var, BMFMC_reference)[source]#
Create the BMFMC visualization object from config.
- Parameters:
plotting_options (dict) – Plotting options
predictive_var (bool) – Boolean flag that triggers the computation of the posterior variance \(\mathbb{V}_{f}\left[p(y_{HF}^*|f,\mathcal{D})\right]\) if set to True. (default value: False)
BMFMC_reference (bool) – Boolean that triggers the BMFMC solution without informative features \(\boldsymbol{\gamma}\) for comparison if set to True (default value: False)
- Returns:
Instance of BMFMCVisualization (obj)
- plot_feature_ranking(dim_counter, ranking, iteration)[source]#
Plot feature ranking.
Plot the score/ranking of possible candidates of informative features \(\gamma_i\). Only the candidates with the highest score will be considered for \(z_{LF}\).
- Parameters:
dim_counter – Input dimension corresponding to the scores. In the next iteration counts will change as one informative features was already determined and the counter reset. Note: In the first iteration, dim_counter coincides with the input dimensions. Afterwards, it only enumerates the remaining dimensions of the input.
ranking – Vector with scores/ranking of candidates \(\gamma_i\)
iteration – Current iteration to find most informative input features
- Returns:
Plots of the ranking/scores of candidates for informative features of the
input :math:`gamma_i`
- plot_manifold(output, Y_LFs_mc, Y_HF_mc, Y_HF_train)[source]#
Plot manifold.
Plot the probabilistic manifold of high-fidelity, low-fidelity outputs and informative features of the input space, depending on the description in the input file. Also plot the probabilistic mapping along with its training points. Potentially animate and save these plots.
- Parameters:
output (dict) – Dictionary containing key-value paris to plot
Y_LFs_mc (np.array) – Low-fidelity output Monte-Carlo samples
Y_HF_mc (np.array) – High-fidelity output Monte-Carlo reference samples
Y_HF_train (np.array) – High-fidelity output training points
- Returns:
Plots of the probabilistic manifold
- plot_pdfs(output)[source]#
Plot pdfs.
Plot the output distributions of HF output prediction, LF output, Monte-Carlo reference, posterior variance or BMFMC reference with no features, depending on settings in input file. Animate and save plots depending on problem description.
- Parameters:
output (dict) – Dictionary containing key-value paris to plot
- Returns:
Plots of model output distribution
queens.visualization.classification module#
Classification visualization.
- class ClassificationVisualization(plotting_dir, plot_name, save_bool, plot_bool=False)[source]#
Bases:
object
Visualization class for ClassificationIterator.
- saving_path#
Path to save the plots
- Type:
Path
- plot_basename#
Common basename for all plots
- Type:
str
- save_bool#
Boolean to save plots
- Type:
bool
- plot_bool#
Boolean for determining whether individual plots should be plotted
- Type:
bool
- Returns:
Instance of the visualization class
- classmethod from_config_create(plotting_options)[source]#
Create the visualization object from the problem description.
- Parameters:
plotting_options (dict) – Dictionary containing the options for plotting
- Returns:
Instance of ClassificationVisualization
- plot_decision_boundary(output, samples, classifier, parameter_names, iteration_index='final')[source]#
Plot decision boundary of the trained classifier.
If num_params>2, each combination of 2 parameters is plotted in a separate subplot.
- Parameters:
output (np.array) – Classification results obtained from simulation
samples (np.array) – Array with sample points, size: (num_sample_points, num_params)
classifier (obj) – Classifier object from Queens
parameter_names (list) – List of parameters names
iteration_index (str) – additional name for saving plots
- class ConditionalDecisionBoundaryDisplay(*, xx0, xx1, response, xlabel=None, ylabel=None)[source]#
Bases:
DecisionBoundaryDisplay
Custom decision boundary display class.
- classmethod from_estimator(estimator, X, *, params=None, conditial_values=None, grid_resolution=100, eps=1.0, plot_method='contourf', xlabel=None, ylabel=None, axes=None, **kwargs)[source]#
Create boundary from classifier.
Example
4d classifier where the second input parameter is the conditional one and fixed to the valued 5 and the last one to -1.
conditonal_values=[(1,5),(3,-1)] params=(0,2)
- Parameters:
estimator (obj) – Trained classifier
X (array) – Input (n_samples, n_params)
params (tuple, optional) – List of paramter indices of the input dimensions to plot. Defaults to (0, 1).
conditial_values (list, optional) – List of tuple with the conditional values. Defaults to None.
grid_resolution (int, optional) – Number of grid points to use for plotting decision boundary. Higher values will make the plot look nicer but be slower to render. Defaults to 100.
eps (float, optional) – Extends the minimum and maximum values of X for evaluating the response function. Defaults to 1.0.
plot_method (str, optional) – matplotlib plot methods. Defaults to “contourf”.
xlabel (str, optional) – Label for the x-axis. Defaults to None.
ylabel (str, optional) – Label for the y-axis. Defaults to None.
axes (Matplotlib axes, optional) – Axes object to plot on. If None, a new figure and axes is created. Defaults to None.
kwargs – Additional keyword arguments for DecisionBoundaryDisplay parent class
- Returns:
sklearn.inspection.DecisionBoundaryDisplay object
- conditional_prediction_decorator(prediction_method, conditial_values)[source]#
Decorator for the estimators.
Currently, the DecisionBoundary only creates grids in a 2d setting. Hence, the conditional fixed values need to be added.
Example
4d classifier where the second input parameter is the conditional one and fixed to the valued 5 and the last one to -1.
conditonal_values=[(1,5),(3,-1)]
- Parameters:
prediction_method (fun) – method to be decorated
conditial_values (list) – list of tuple to add the conditional values.
- Returns:
the wrapped method.
queens.visualization.gaussian_neural_network_vis module#
Plotting functions for the Gaussian Neural Network.
queens.visualization.gnuplot_vis module#
Gnuplot visualization.
queens.visualization.grid_iterator_visualization module#
Provide utilities for visualization in the grid iterator.
A module that provides utilities and a class for visualization in the grid iterator.
- class GridIteratorVisualization(paths, save_bools, plot_booleans, scale_types_list, var_names_list)[source]#
Bases:
object
Visualization class for GridIterator.
Visualization class for GridIterator that contains several plotting, storing and visualization methods that can be used anywhere in QUEENS.
- saving_paths_list#
List with saving_paths_list to save the plots.
- Type:
list
- save_bools#
List with booleans to save plots.
- Type:
list
- plot_booleans#
List of booleans for determining whether individual plots should be plotted or not.
- Type:
list
- scale_types_list#
List scaling types for each grid variable.
- Type:
list
- var_names_list#
List with variable names per grid dimension.
- Type:
list
- Returns:
GridIteratorVisualization (obj) – Instance of the GridIteratorVisualization Class
- classmethod from_config_create(plotting_options, grid_design)[source]#
Create the grid visualization object from the problem description.
- Parameters:
plotting_options (dict) – Dictionary containing the plotting options
grid_design (dict) – Dictionary containing grid information
- Returns:
Instance of GridIteratorVisualization (obj)
- get_plotter(num_params)[source]#
Return the appropriate plotting function based on grid dimensions.
- Parameters:
num_params (int) – Number of grid-dimensions
- Returns:
Plotting function for corresponding dimension (obj)
- plot_one_d(output, samples, n_grid_p)[source]#
Plotting method for one dimensional grid.
- Parameters:
output (np.array) – Simulation output
samples (np.array) – Simulation input/samples/grid-points
n_grid_p (np.array) – Array containing number of grid points for each parameter
- plot_qoi_grid(output, samples, num_params, n_grid_p)[source]#
Plot Quantity of Interest over grid (so far support up to 2D grid).
- Parameters:
output (dict) – QoI obtained from simulation
samples (np.array) – Grid coordinates, flattened 1D arrays as columns of 2D samples array
num_params (int) – Number of parameters varied
n_grid_p (np.array) – Array containing number of grid points for each parameter
queens.visualization.sa_visualization module#
Module providing visualization utilities for sensitivity analysis.
- class SAVisualization(saving_paths, save_plot, display_plot)[source]#
Bases:
object
Visualization class for sensitivity analysis.
Visualization class for sensitivity analysis that contains several plotting, storing and visualization methods that can be used anywhere in QUEENS.
- saving_paths#
Dict of paths where to save the plots.
- Type:
dict
- should_be_saved#
Dict of booleans to save plots or not.
- Type:
dict
- should_be_displayed#
Dict of booleans for determining whether individual plots should be displayed or not.
- Type:
dict
- figures#
Dictionary to hold figures for displaying later.
- Type:
dict
- Returns:
SAVisualization (obj) – Instance of the SAVisualization Class
- classmethod from_config_create(plotting_options)[source]#
Create the SAVisualization object from the problem description.
- Parameters:
plotting_options (dict) – Dictionary containing the plotting options
- Returns:
Instance of SAVisualization (obj)
- plot(results)[source]#
Call plotting methods for sensitivity analysis.
- Parameters:
results (dict) – Dictionary containing results to plot
- Returns:
Plots of sensitivity indices
- annotate_points(data)[source]#
Annotate points in scatter plot with parameter names.
- Parameters:
data (DataFrame) – Data to be annotated
queens.visualization.surrogate_visualization module#
Visualization of surrogate models.
A module that provides utilities and a class for visualization of surrogate models.
- class SurrogateVisualization(saving_paths, save_plot, display_plot)[source]#
Bases:
object
Visualize a surrogate model.
Visualization class for surrogate models that contains several plotting, storing and visualization methods that can be used anywhere in QUEENS.
- saving_paths#
Dict of paths where to save the plots.
- Type:
dict
- should_be_saved#
Dict of booleans to save plots or not.
- Type:
dict
- should_be_displayed#
Dict of booleans for determining whether individual plots should be displayed or not.
- Type:
dict
- parameter_names#
List of parameter names as strings.
- Type:
list
- figures#
Dict of visualization figures.
- Type:
dict
- Returns:
SAVisualization (obj) – Instance of the SurrogateVisualization Class
- classmethod from_config_create(plotting_options)[source]#
Create the SurrogateVisualization object.
- Parameters:
plotting_options (dict) – Dictionary containing the plotting_options
- Returns:
Instance of SurrogateVisualization (obj)
- plot(parameter_names, surrogate_model)[source]#
Call plotting methods for surrogate model.
- Parameters:
parameter_names (lst) – Parameter names
surrogate_model (Model) – Surrogate Model
- Returns:
Plots of sensitivity indices
- plot_1d(gp_approximation)[source]#
Plot 1D projection of Gaussian process.
- Parameters:
gp_approximation (RegressionApproximation object) – Surrogate that holds GP model and training data
queens.visualization.variational_inference_visualization module#
A module that provides utilities and a class for visualization in VI.
- class VIVisualization(path, save_bool, plot_boolean, axs_convergence_plots, fig_convergence_plots)[source]#
Bases:
object
Visualization class for VI.
- path#
Paths to save the plots.
- Type:
str
- save_bool#
Boolean to save plot.
- Type:
bool
- plot_boolean#
Boolean for determining whether should be plotted or not.
- Type:
bool
- axs_convergence_plots#
Axes for the convergence plot.
- Type:
matplotlib axes
- fig_convergence_plots#
Figure for the convergence plot.
- Type:
matplotlib figure
- classmethod from_config_create(plotting_options)[source]#
Create the VIVisualization object from config.
- Parameters:
plotting_options (dict) – Dictionary containing the plotting options
- Returns:
Instance of VIVisualization (obj)
- plot_convergence(iteration, variational_params_list, elbo)[source]#
Plots for VI over iterations.
- Consists of 3 subplots:
ELBO
Variational parameters
Relative change in variational parameters
- Parameters:
iteration (int) – Current iteration
variational_params_list (list) – List of parameters from first to last iteration
elbo (np.array) – Row vector elbo values over iterations